skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaku, Aakash and"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Automatic action identification from video and kinematic data is an important machine learning problem with applications ranging from robotics to smart health. Most existing works focus on identifying coarse actions such as running, climbing, or cutting vegetables, which have relatively long durations and a complex series of motions. This is an important limitation for applications that require identification of more elemental motions at high temporal resolution. For example, in the rehabilitation of arm impairment after stroke, quantifying the training dose (number of repetitions) requires differentiating motions with sub-second durations. Our goal is to bridge this gap. To this end, we introduce a large-scale, multimodal dataset, StrokeRehab, as a new action-recognition benchmark that includes elemental short-duration actions labeled at a high temporal resolution. StrokeRehab consists of a high-quality inertial measurement unit sensor and video data of 51 stroke-impaired patients and 20 healthy subjects performing activities of daily living like feeding, brushing teeth, etc. Because it contains data from both healthy and impaired individuals, StrokeRehab can be used to study the influence of distribution shift in action-recognition tasks. When evaluated on StrokeRehab, current state-of-the-art models for action segmentation produce noisy predictions, which reduces their accuracy in identifying the corresponding sequence of actions. To address this, we propose a novel approach for high-resolution action identification, inspired by speech-recognition techniques, which is based on a sequence-to-sequence model that directly predicts the sequence of actions. This approach outperforms current state-of-the-art methods on StrokeRehab, as well as on the standard benchmark datasets 50Salads, Breakfast, and Jigsaws. 
    more » « less